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LETTER TO THE EDITOR 

Fractal dimensions in three-dimensional Kauffman cellular 
automata 

Lucilla de Arcangelist 
Institute for Theoretical Physics, University of Cologne, 5000 Koln 41, West Germany 

Received 23 January 1987 

Abstract. The Kauffman random networks of automata are studied on a simple cubic 
lattice by computer simulations. Each automaton follows random rules, depending on its 
six neighbours and fixed in time. A transition between the frozen and the chaotic phase 
is observed and the fractal dimension ofthe asymptotic actual damage at the phase transition 
is measured. 

Let us consider a system of N spins, or Boolean variables, ui, which can take two 
possible values, either zero or unity, and are placed at the sites of a lattice. The time 
evolution of the system is determined by a set of Boolean functions, A, one for each 
spin, each depending on K variables uj, i.:. K input sites, not necessarily different, 
chosen among the N automata. There are 2’ possible Boolean functions of K variables 
and the functions are randomly chosen among these 22K possibilities. For each time 
t, then the value of the spin ui at site i is given by 

u i ( t + l )  = J ; ( U j , ( t ) ,  1 * * ujK ( ? ) ) e  (1) 

This model was first introduced by Kauffman (1969, 1984, 1986) in order to describe 
the mechanism leading to the differentiation of the various cell types in a biological 
system, starting from an ensemble of different genes (or automata) obeying the same 
random rules. 

The interest in these models has increased beyond biology, since they are suitable 
to describe more general problems, such as the spreading of a single defect in a complex 
system (Packard and Wolfram 1985, Stanley et a1 1987, Costa 1987), the transition 
from an ordered to a disordered phase, and the crucial question of stability of a 
complicated structure against minor damage. 

Depending on the choice of the K variables for the functions f;, different cases of 
this model can be defined; in particular, the K input sites can be fixed to be the K 
neighbours of the given site i on the lattice (finite-dimensional case), or they can be 
chosen at random among the N spins in the system (infinite-dimensional case). Much 
recent theoretical and computational work has been done on this model, in the 
infinite-dimensional case (Derrida and Pomeau 1986, Demda and Flyvbjerg 1986, 
Derrida 1986), and in two dimensions (Derrida and Stauffer 1986, Weisbuch and 
Stauffer 1986, Stauffer 1987). 
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The aim of the present letter is to find, to our knowledge for the first time, results 
in three dimensions and to determine fractal dimensions. 

Depending on parameters, there exist two possible phases for a system of N spins: 
a frozen phase, in which an initial defect introduced in the system will remain confined 
and may eventually disappear;.and a chaotic phase, in which the defect will spread 
throughout the system (Kauffman 1969, 1984, 1986, Derrida and Stauffer 1986). We 
want to investigate the fractal properties of damage spreading throughout the system 
at the phase transition. We consider two identical configurations, obeying the same 
set of rules. We introduce an initial damage, i.e. we flip the central spin in one 
configuration, and we let the two configurations evolve in time until the damage (defined 
as the set of spins differing in the two configurations) touches the boundaries of the 
lattice. In the frozen phase, the damage does not spread through the lattice but it 
remains confined to a small cluster of damaged spins, whereas, in the chaotic phase, 
the damage spreads with an almost constant propagation velocity. At the transition 
we can define the following quantities (Stauffer 1987) 

T - ~~z ( 2 )  

Ma,, - L d 4 c 1  (3)  

where T is the time for the damage to touch the boundaries and Ma,, is the mass of 
the damage at time T. These two novel exponents d, and d,,, represent respectively 
how the time for the damage to spread over a distance L goes to infinity as L + 00, 

and the fractal dimension of this damage. In the chaotic phase we have d, = 1 and 
d,,, = d, since the damage in this case is a homogeneous cluster spanning the whole 
system. In this way the Kauffman model is treated in the language of other growth 
processes (Herrmann 1986), which are better known at present. 

We consider a system of N spins on a simple cubic lattice of linear dimension L. 
For each spin, we define the rule f; to depend on its nearest neighbours; since in a 
simple cubic lattice the number of nearest neighbours is 6, for each of the L3 spins 
we need 26=64 memory allocations for the function f;. These 64 Boolean function 
values are selected equal to unity with probability p and to zero with probability 1 - p  
and, once they are defined initially, they are kept constant throughout the simulation. 
Following Derrida and Stauffer (1986) we study the transition by varying the continuous 
parameter p .  We start with a random configuration of spins; therefore we need to 
analyse only the range of p between 0 and 0.5, due to the symmetry of the Boolean 
functions. 

In order to save memory, we have used the multispin coding technique, storing 
one spin per bit, but also storing n rows of the lattice in a computer work. On the 
Cyber 76, where the computer word has 60 bits, we take L = 60/n, with the integer n 
such that L/ n is also an integer and n c 30. Then it is possible to store L3 spins in 
L Z / n  memory allocations. For example, in the first word the rows 1, ( L / n ) +  
1, . . . , ( n  - 1)( L/ n) + 1 are stored, this arrangement simplifying the utilisation of 
periodical boundary conditions. 

Starting from an initial configuration of random spins, we let the system evolve in 
time according to (1) and we update simultaneously all the spins. Our alogrithm allows 
one spin flip in 2.1 microseconds. 

First we determine at what value of the parameter p the phase transition occurs. 
We start with two identical random configurations of spins, obeying the same set of 
rules. Then we change the state of a small fraction +(O) of spins in one configuration 
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and we let them both evolve in time t .  We measure then the damage $ ( t ) ,  i.e. the 
fraction of spins which differ between the two configurations, in the limit t + m  (i.e. 
after a number of the order of lo3 time steps). 

Figure 1 shows our results, as a function of p ,  for two different system sizes (L = 15, 
30) and two different values of the initial amount of damage. The transition between 
the frozen and the chaotic phase is seen to occur at p c  = 0.12. For p > p c  the system 
is chaotic, +(CO) remains finite and is roughly independent of the initial distance. At 
p = O S ,  even if the system is totally random, $(a) is slightly less than f (about 0.49), 
evidence of the correlation between two configurations because they obey the same 
rules. As p approaches 0.12, $(a) goes to zero in the limit $(O) + 0. In this sense, 
+(O) and +(CO) are analogous to magnetic field and magnetisation in magnetic phase 
transitions (Derrida and Stauffer 1986). For large values of (J(O), there is no transition 
and $(CO) varies smoothly. 

Now we investigate the fractal properties of the spreading damage. We introduce 
only a single initial defect in the system ($(O) = K 3 )  and monitor its spreading in 
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Figure 1. The asymptotic damage +(a) is plotted as a function of the probability p for 
thesystem sizes L = l S  (+(O)=O.OOl,O and +(0)=0.104, x )  and L = 3 0  ( + ( O ) = O . O O l ,  A 
and +(O) = 0.104, 0). The data are taken after lo00 time steps. The transition occurs at 
p =0.12. In the inset the same quantities are plotted in the vicinity of the transition. The 
data corresponding to the smaller system size exhibit a transition at a value of p larger 
than 0.12, due to finite size effect. For the larger value of +(O) the data do not exhibit a 
sharp transition but they go smoothly to zero near p = 0. 
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Figure 2. Log-log plot of the average touching time (73 (O),  and the average mass at the 
time of touching (Mac , )  ( x )  against L. The average is taken over the runs in which the 
damage reaches the boundaries of the lattice (e.g. 1500 runs for L = 6, 140 runs for L = 15,  
5 runs for L = 30). The slopes are d ,  = 2.22 and do,, = 1.77. 

time. At p 20.12, we find (figure 2) that 

d ,  2 2.2 and d,,, 2 1.8 (4) 

d ,  = 1.7 and d,,, 2 1.5. (5) 

the corresponding values on the square lattice are (Stauffer 1987) 

In both the two- and the three- dimensional cases, the fractal dimension d,,, appears 
to be significantly lower than the lattice Euclidean dimension. 

In conclusion, we have studied the Kauffman model on a simple cubic lattice by 
computer simulation. We observe a sharp transition between the frozen and the chaotic 
phase at a value of p 5: 0.12. At the transition, we measure the time for an initial defect 
to touch the boundaries of the lattice and the mass of this damage. These quantities 
scale with two novel exponents d, 2 2.2 and d,,, 2 1.8. 

We would like to thank D Stauffer for many helpful discussions. This work was 
supported by SFB 125. 
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